Abstract
In the early nineties, Fokas, Its and Kitaev observed that there is a natural Riemann-Hilbert problem (for 2 xĂ2 matrix functions) associated with a system of orthogonal polynomials. This Riemann-Hilbert problem was later used by Deift et al. and Bleher and Its to obtain interesting results on orthogonal polynomials, in particular strong asymptotics which hold uniformly in the complex plane. In this paper we will show that a similar Riemann-Hilbert problem (for (r + 1) Ă (r + 1) matrix functions) is associated with multiple orthogonal polynomials. We show how this helps in understanding the relation between two types of multiple orthogonal polynomials and the higher order recurrence relations for these polynomials. Finally we indicate how an extremal problem for vector potentials is important for the normalization of the Riemann-Hilbert problem. This extremal problem also describes the zero behavior of the multiple orthogonal polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.