Abstract
The sequence of nontrivial zeros of the Riemann zeta function is zeta regularizable. Therefore, systems with countably infinite number of degrees of freedom described by self-adjoint operators whose spectra is given by this sequence admit a functional integral formulation. We discuss the consequences of the existence of such self-adjoint operators in field theory framework. We assume that they act on a massive scalar field coupled to a background field in a (d+1)-dimensional flat space–time where the scalar field is confined to the interval [0, a] in one of its dimensions and there are no restrictions in the other dimensions. The renormalized zero-point energy of this system is presented using techniques of dimensional and analytic regularization. In even-dimensional space–time, the series that defines the regularized vacuum energy is finite. For the odd-dimensional case, to obtain a finite vacuum energy per unit area, we are forced to introduce mass counterterms. A Riemann mass appears, which is the correction to the mass of the field generated by the nontrivial zeros of the Riemann zeta function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.