Abstract
We introduce a class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a “gauge” group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.