Abstract
This study investigates the solutions of the Riemann problem for a two-layered blood flow model which is modeled by a system of quasi-linear hyperbolic partial differential equations (PDEs) obtained by vertically averaging the Euler equations over each layer. We explore the elementary waves, namely shock wave, rarefaction wave and contact discontinuity wave on the basis of method of characteristics. Further, we establish the existence and uniqueness of the corresponding local Riemann solution. Across the contact discontinuity wave, the areas of two nonlinear algebraic equations are determined by using the Newton–Raphson method of two variables in all possible wave combinations. A precise analytical method is used to display a detailed vision of the solution for this model inside a specified space domain and some certain time frame.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.