Abstract

Abstract We are concerned with the vanishing flux-approximation limits of solutions to the isentropic relativistic Euler equations governing isothermal perfect fluid flows. The Riemann problem with a two-parameter flux approximation including pressure term is first solved. Then, we study the limits of solutions when the pressure and two-parameter flux approximation vanish, respectively. It is shown that, any two-shock-wave Riemann solution converges to a delta-shock solution of the pressureless relativistic Euler equations, and the intermediate density between these two shocks tends to a weighted δ-measure that forms a delta shock wave. By contract, any two-rarefaction-wave solution tends to a two-contact-discontinuity solution of the pressureless relativistic Euler equations, and the intermediate state in between tends to a vacuum state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call