Abstract

In this paper, we consider the Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady simple wave flow of an isentropic, inviscid and perfectly conducting compressible fluid, subjected to a transverse magnetic field. This class of equations includes, as a special case, the equations of isentropic gasdynamics. We study the shock and rarefaction waves and their properties, and discuss the geometry of shock curves using the Riemann invariant coordinates. Under certain conditions, we show the existence and uniqueness of the solution to the Riemann problem for arbitrary initial data, and then discuss the vacuum state in isentropic magnetogasdynamics. Finally, we discuss numerical results for different initial data, and discuss all possible interactions of elementary waves. It is noticed that although the magnetogasdynamic system is more complex than the corresponding gasdynamic system, all the parallel results remain identical. However, unlike the ordinary gasdynamic case, the solution inside rarefaction waves in magnetogasdynamics cannot be obtained directly and explicitly; indeed, it requires an extra iteration procedure. It is also observed that the presence of a magnetic field makes both the shock and rarefaction stronger compared to what they would have been in the absence of a magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call