Abstract
This article presents an attempt to comprehend the evolution of the ideas underlying the physical approach to the proof of one of the problems of the century - the Riemann hypothesis regarding the location of non-trivial zeros of the Riemann zeta function. Various formulations of this hypothesis are presented, which make it possible to clarify its connection with the distribution of primes in the set of natural numbers. A brief overview of the main directions of this approach is given. The probable cause of their failures is indicated - the solution of the problem within the framework of the classical Turing paradigm. A successful proof of the Riemann hypothesis based on the use of a relativistic computation model that allows one to overcome the Turing barrier is presented. This model has been previously applied to solve another problem not computable on the classical Turing machine - the calculation of the sums of divergent series for the Riemann zeta function of the real argument. The possibility of using relativistic computing for the development of artificial intelligence systems is noted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions on Machine Learning and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.