Abstract

In this paper, a Riemann-Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call