Abstract

BackgroundMany questions in statistical genomics can be formulated in terms of variable selection of candidate biological factors for modeling a trait or quantity of interest. Often, in these applications, additional covariates describing clinical, demographical or experimental effects must be included a priori as mandatory covariates while allowing the selection of a large number of candidate or optional variables. As genomic studies routinely require mandatory covariates, it is of interest to propose principled methods of variable selection that can incorporate mandatory covariates.MethodsIn this article, we propose the ridge-lasso hybrid estimator (ridle), a new penalized regression method that simultaneously estimates coefficients of mandatory covariates while allowing selection for others. The ridle provides a principled approach to mitigate effects of multicollinearity among the mandatory covariates and possible dependency between mandatory and optional variables. We provide detailed empirical and theoretical studies to evaluate our method. In addition, we develop an efficient algorithm for the ridle. Software, based on efficient Fortran code with R-language wrappers, is publicly and freely available at https://sites.google.com/site/zhongyindaye/software.ResultsThe ridle is useful when mandatory predictors are known to be significant due to prior knowledge or must be kept for additional analysis. Both theoretical and comprehensive simulation studies have shown that the ridle to be advantageous when mandatory covariates are correlated with the irrelevant optional predictors or are highly correlated among themselves. A microarray gene expression analysis of the histologic grades of breast cancer has identified 24 genes, in which 2 genes are selected only by the ridle among current methods and found to be associated with tumor grade.ConclusionsIn this article, we proposed the ridle as a principled sparse regression method for the selection of optional variables while incorporating mandatory ones. Results suggest that the ridle is advantageous when mandatory covariates are correlated with the irrelevant optional predictors or are highly correlated among themselves.

Highlights

  • Many questions in statistical genomics can be formulated in terms of variable selection of candidate biological factors for modeling a trait or quantity of interest

  • An ad hoc approach is often employed where the response is regressed on mandatory covariates without penalization, as if in an ordinary least squares (OLS), while penalized regression is applied upon the optional variables, independently of the mandatory ones, to achieve variable selection

  • We compare the ridle to the ridge, lasso, elastic net, and the lasso and elastic net without penalization on the mandatory covariates

Read more

Summary

Introduction

Many questions in statistical genomics can be formulated in terms of variable selection of candidate biological factors for modeling a trait or quantity of interest. Often, in these applications, additional covariates describing clinical, demographical or experimental effects must be included a priori as mandatory covariates while allowing the selection of a large number of candidate or optional variables. Other methods for sparse regression include the smoothly clipped absolute deviation (SCAD) [7], adaptive lasso [8], Dantzig selector [9], etc These methods were not designed for applications with mandatory covariates. We consider the problem of efficient estimation of coefficients of mandatory covariates and simultaneous variable selection of optional variables

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call