Abstract

Abstract Development of the rifted continental margins and subsequent seafloor spreading in the North Atlantic was dominated by interaction between the Iceland mantle plume and the continental and oceanic rifts. There is evidence that at the time of breakup a thin sheet of particularly hot asthenospheric mantle propagated beneath the lithosphere across a 2500 km diameter region. This event caused transient uplift, massive volcanism and intrusive magmatism, and a rapid transition from continental stretching to seafloor spreading. Subsequently, the initial plume instability developed to an axisymmetric shape, with the c. 100 km diameter central core of the Iceland plume generating 30–40 km thick crust along the Greenland-Iceland-Faroes Ridge. The surrounding 2000 km diameter region received the lateral outflow from the plume, causing regional elevation and the generation of thicker and shallower than normal oceanic crust. We document both long-term (10–20 Ma) and short-term (3–5 Ma) fluctuations in the temperature and/or flow rate of the mantle plume by their prominent effects on the oceanic crust formed south of Iceland. Lateral ridge jumps in the locus of rifting are frequent above the regions of hottest asthenospheric mantle, occurring in both the early history of seafloor spreading, when the mantle was particularly hot, and throughout the generation of the Greenland-Iceland-Faroes Ridge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call