Abstract
This paper presents a new method of estimating fuzzy multivariable linear and nonlinear regression models using triangular fuzzy numbers. This estimation method is obtained by implementing a dual version of the ridge regression procedure for linear models. It allows us to perform fuzzy nonlinear regression by constructing a fuzzy linear regression in a high dimensional feature space for the data set with crisp inputs and fuzzy output. Experimental results are then presented, which indicate the performance of this algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.