Abstract
In this paper, the Ridge Regression method is employed to estimate the shape parameter of the Lomax distribution (LD). In addition to that, the approaches of both classical and Bayesian are considered with several loss functions as a squared error (SELF), Linear Exponential (LLF), and Composite Linear Exponential (CLLF). As far as Bayesian estimators are concerned, informative and noninformative priors are used to estimate the shape parameter. To examine the performance of the Ridge Regression method, we compared it with classical estimators which included Maximum Likelihood, Ordinary Least Squares, Uniformly Minimum Variance Unbiased Estimator, and Median Method as well as Bayesian estimators. Monte Carlo simulation compares these estimators with respect to the Mean Square Error criteria (MSE's). The result of the simulation mentioned that the Ridge Regression method is promising and can be used in a real environment. where it revealed better performance the than Ordinary Least Squares method for estimating shape parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.