Abstract

An unexpected result at the RHIC and the LHC is the observation that high-multiplicity hadronic events in heavy-ion and proton-proton collisions are distributed as two ridges, approximately flat in rapidity and opposite in azimuthal angle. We propose that the origin of these events is due to the inelastic collisions of aligned gluonic flux tubes that underly the color confinement of the quarks in each proton. We predict that high-multiplicity hadronic ridges will also be produced in the high energy photon-photon collisions accessible at the LHC in ultra-peripheral proton-proton collisions or at a high energy electron-positron collider. We also note the orientation of the flux tubes between the quark and antiquark of each high energy photon will be correlated with the plane of the scattered proton or lepton. Thus hadron production and ridge formation can be controlled in a novel way at the LHC by observing the azimuthal correlations of the scattering planes of the ultra-peripheral protons with the orientation of the produced ridges. Photon-photon collisions can thus illuminate the fundamental physics underlying the ridge effect and the physics of color confinement in QCD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.