Abstract

Ridge preservation is universally acknowledged as the conventional method for the post-extraction healing yet there are no standard materials for the ideal healing outcome. Herein, a composite gel comprising gelatin nanoparticles (GNPs) and injectable platelet-rich-fibrin (i-PRF) as the potential candidate for extracted socket healing is introduced. The combination of GNPs and i-PRF not only possesses favorable mechanical properties to withstand external force but also accelerate the blood clotting time significantly. In addition, six beagle dogs were adopted to assess the angiogenic and osteogenic capacity of GNPs+i-PRF gel in vivo. The GNPs+i-PRF gel significantly produced the most blood vessels area, woven bone and low osteoclast activity in extracted sockets at 2 weeks postoperation and remarkably generated corticalization on the alveolar ridge crest at 8 weeks postoperation according to histological results. Therefore, GNPs+i-PRF gel can be recommended as the candidate grafting material regarding ridge preservation for its cost effectiveness, excellent biocompatibility, facilitation of blood clotting and favorable capacity of promoting angiogenesis and osteogenesis.

Highlights

  • Alveolar ridge absorption is acknowledged as an intractable problem after tooth extraction

  • This study aimed to examine the angiogenesis and osteogenesis in an extraction socket model following the application of alveolar ridge preservation technique with several materials in a histological and radiographical fashion

  • The present experimental study revealed that (1) ridge preservation treatment including Deproteinized bovine bone mineral (DBBM), DBBM+injectable platelet-rich-fibrin (i-PRF), gelatin nanoparticles (GNPs) and GNPs+i-PRF resulted in less vertical and horizontal bone loss post-extraction when compared to the Control group; (2) the addition of i-PRF failed to increase the bone volume among groups and yet GNPs+i-PRF could facilitate the early establishment of neovascularization in the socket; (3) by early vascularization, a significant corticalization to bridge and seal the gap within the socket was observed in GNPs+i-PRF group while such phenomenon was not distinct in the other groups

Read more

Summary

Introduction

Alveolar ridge absorption is acknowledged as an intractable problem after tooth extraction. A multitude of endeavors has been devoted to providing desired approaches for ridge preservation. Deproteinized bovine bone mineral (DBBM), as one of the most popular employed xenografts in clinical, has been attributed to its prominent advantages, such like reductive risk of pathogen transmission and low antigenic reaction as well as its osteoconductive ability [5, 6]. DBBM, possessing only the ability of osteoconduction but no osteoinduction and osteogenesis due to the. As a particulate graft, the lack of injectability limits its utilization manually and extending the operation time [8]. The application of DBBM, which only emphasizes the osteoconductive effect, but with poor reabsorbability and the lack of injectability, tends to create a rather slow bone healing process

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.