Abstract

This article proposes a penalized likelihood method to jointly estimate multiple precision matrices for use in quadratic discriminant analysis (QDA) and model-based clustering. We use a ridge penalty and a ridge fusion penalty to introduce shrinkage and promote similarity between precision matrix estimates. We use blockwise coordinate descent for optimization, and validation likelihood is used for tuning parameter selection. Our method is applied in QDA and semi-supervised model-based clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.