Abstract

Orthonormal ridgelets provide an orthonormal basis for L2(R2) built from special angularly-integrated ridge functions. In this paper we explore the relationship between orthonormal ridgelets and true ridge functions r(x1 cos θ+x2 sin θ). We derive a formula for the ridgelet coefficients of a ridge function in terms of the 1-D wavelet coefficients of the ridge profile r(t). The formula shows that the ridgelet coefficients of a ridge function are heavily concentrated in ridge parameter space near the underlying scale, direction, and location of the ridge function. It also shows that the rearranged weighted ridgelet coefficients of a ridge function decay at essentially the same rate as the rearranged weighted 1-D wavelet coefficients of the 1-D ridge profile r(t). In short, the full ridgelet expansion of a ridge function is in a certain sense equally as sparse as the 1-D wavelet expansion of the ridge profile. It follows that partial ridgelet expansions can give good approximations to objects which are countable superpositions of well-behaved ridge functions. We study the nonlinear approximation operator which “kills” coefficients below certain thresholds (depending on angular- and ridge-scale); we show that for approximating objects which are countable superpositions of ridge functions with 1-D ridge profiles in the Besov space B1/pp, p(R), 0<p<1, the thresholded ridgelet approximation achieves optimal rates of N-term approximation. This implies that appropriate thresholding in the ridgelet basis is equally as good, for certain purposes, as an ideally-adapted N-term nonlinear ridge approximation, based on perfect choice of N-directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call