Abstract

Abstract Background/purpose The development of an automatic diagnostic algorithm using characteristics of dermoscopic findings in acral lentiginous melanoma (ALM) has been slow due to the rarity of melanoma in non-Caucasian populations. In this study, we present an automatic algorithm that can distinguish the “furrow” and “ridge” patterns of pigmentation on the palm and foot, and report its usefulness for the detection of ALM. Methods To distinguish between ALM and nevus, the proposed image analysis is applied. From a dermoscopic image, edges having the steepest ascent or descent are detected through Gaussian derivative filtering. The widths between edges are then measured and the brightness of each stripe is tagged. The dark area is tagged as black and the bright area is tagged as white. The ratio of widths of dark to bright is calculated at each stripe pair and the histogram of the width ratio in the dermoscopic image is generated. Results A total of 297 dermoscopic images confirmed by histopathologic diagnoses are classified. All of the melanoma dermoscopic images were classified correctly using the proposed algorithm, while only one nevus image was misclassified. The proposed method achieved a sensitivity of 100%, a specificity of 99.1%, an accuracy of 99.7%, and a similarity of 99.7%. Conclusion In this study, we propose a novel automatic algorithm that can precisely distinguish the “furrow” and “ridge” patterns of pigmentation on dermoscopic images using the width ratio of dark and bright patterns. It is expected that the proposed algorithm will contribute to the early diagnosis of ALM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.