Abstract
Estimation of human pose in physical human-machine interactions such as bicycling is challenging because of highly-dimensional human motion and lack of inexpensive, effective motion sensors. In this paper, we present a computational scheme to estimate both the rider trunk pose and the bicycle roll angle using only inertial and force sensors. The estimation scheme is built on a rider-bicycle dynamic model and the fusion of the wearable inertial sensors and the bicycle force sensors. We take advantages of the attractive properties of the robust force measurements and the motion-sensitive inertial measurements. The rider-bicycle dynamic model provides the underlying relationship between the force and the inertial measurements. The extended Kalman filter-based sensor fusion design fully incorporates the dynamic effects of the force measurements. The performance of the estimation scheme is demonstrated through extensive indoor and outdoor riding experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.