Abstract

The novelty in big data is rising day-by-day in such a way that the existing software tools face difficulty in supervision of big data. Furthermore, the rate of the imbalanced data in the huge datasets is a key constraint to the research industry. Thus, this paper proposes a novel technique for handling the big data using Spark framework. The proposed technique undergoes two steps for classifying the big data, which involves feature selection and classification, which is performed in the initial nodes of Spark architecture. The proposed optimization algorithm is named rider chaotic biography optimization (RCBO) algorithm, which is the integration of the rider optimization algorithm (ROA) and the standard chaotic biogeography-based optimisation (CBBO). The proposed RCBO deep-stacked auto-encoder using Spark framework effectively handles the big data for attaining effective big data classification. Here, the proposed RCBO is employed for selecting suitable features from the massive dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.