Abstract

This study introduces an innovative approach to tackle multi-objective linear programming (MOLP) problems amidst uncertainty, employing interval-valued fuzzy numbers. The method is tailored to resolve ride-hailing matching challenges encompassing uncertain travel times. Findings reveal that managing uncertainty parameters within interval-valued fuzzy MOLP is achieved through strategic reformulations, focusing on constraint coefficients, resulting in streamlined linear programming formulations conducive to solution simplicity. The efficacy of the proposed model in efficiently handling ride-hailing matching quandaries is demonstrated. Moreover, this study delves into the prospective applications of the developed method, including its potential for generalization to address non-linear programming (NLP) issues pertinent to the ride-hailing domain. This research advances decision-making processes under uncertainty and paves the way for broader applications beyond ride-hailing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call