Abstract

The purpose of this paper is to investigate an active seat suspension system with two active actuators using a non-fragile robust control strategy. A simple deterministic vibration model of human body is added to the seat suspension dynamical model in order to make the modeling more accurate. Desired controller is obtained by solving a linear matrix inequality formulation by considering the vertical body acceleration as measurement signal. Finally, the effect of the seat actuator and controller gain variations on the closed-loop system performance is investigated numerically for two deterministic external excitations: bump and a realization of Gaussian white noise. Simulations show that the seat actuator has a noticeable effect on the seat suspension performance especially under random disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.