Abstract
Abstract The issue of ride comfort for vehicle operations has recently generated considerable interest especially in heavy vehicle systems since long-distance drivers are more likely to experience high levels of vibration. This paper introduces the general concept of vibration-related health problems, discusses ride comfort assessment criteria and methods, and then focuses on the methodology of using computer simulation to analyze ride comfort. The computer-based ride comfort model can be divided into three sub-models: vehicle model, driver/seat model, and road profile input model. Several vehicle models and driver/seat models are reviewed and detailed modeling techniques are introduced. A five-axle tractor/semi-trailer/driver combination ride comfort simulation model is developed in this paper using the software DADS. Both four-spring tandem suspension and independent air spring suspension are studied. Road profiles are assumed as static zero mean Gaussian random process. Vertical acceleration at the interface between seat and driver body is obtained from simulation results. Power spectral density and root mean square (RMS) vertical acceleration are calculated based on simulation results. RMS acceleration at ISO classified good and average roads are compared with ISO 8-hour fatigue vibration limit. It is found that RMS acceleration of this particular vehicle simulated in this paper is below the ISO 8-hour fatigue limit for both good and average roads when traveling at the speed of fifty miles per hour. This implies a good ride comfort. Axle dynamic load coefficients (DLC) are calculated for four suspension configurations that are combinations of air springs and steel springs. Results show that large DLC doesn’t necessarily indicate bad ride quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.