Abstract

ABSTRACT In this paper, a twenty-one degrees of freedom mathematical model of a railway vehicle is formulated, considering its main components (i.e. carbody, bolster, bogie frame, and wheel axle) as rigid for the rigid body analysis of ride behavior of the vehicle. The ride comfort of the vehicle is analyzed and optimized using ISO 2631 criteria. Further, vertical flexibility of the carbody is accounted for with few modifications in the model, and the effect of vertical stiffness on ride behavior is analyzed and compared with a rigid carbody analysis using the Spering ride index. The carbody bending frequencies are investigated using the covariance method, and it is found that the reduction in stiffness of carbody beyond a specific frequency introduces significant carbody acceleration and declines the vehicle ride. The increased carbody bending frequencies can achieve higher vehicle speed and adequate isolation from track excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.