Abstract

Little is known about the roles of Rictor/mTORC2 in the leukemogenesis of acute myeloid leukemia. Here, we demonstrated that Rictor is essential for the maintenance of mixed lineage leukemia (MLL)-driven leukemia by preventing leukemia stem cells (LSCs) from exhaustion. Rictor depletion led to a reactive activation of mTORC1 signaling by facilitating the assembly of mTORC1. Hyperactivated mTORC1 signaling in turn drove LSCs into cycling, compromised the quiescence of LSCs and eventually exhausted their capacity to generate leukemia. At the same time, loss of Rictor had led to a reactive activation of FoxO3a in leukemia cells, which acts as negative feedback to restrain greater over-reactivation of mTORC1 activity and paradoxically protects leukemia cells from exhaustion. Simultaneous depletion of Rictor and FoxO3a enabled rapid exhaustion of MLL LSCs and a quick eradication of MLL leukemia. As such, our present findings highlighted a pivotal regulatory axis of Rictor-FoxO3a in maintaining quiescence and the stemness of LSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.