Abstract

The most prominent pathophysiological effect of spotted fever group (SFG) rickettsial infection of microvascular endothelial cells (ECs) is an enhanced vascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the morbidity and mortality in severe cases. To date, the cellular and molecular mechanisms by which SFG Rickettsia increase EC permeability are largely unknown. In the present study we used atomic force microscopy (AFM) to study the interactive forces between vascular endothelial (VE)-cadherin and human cerebral microvascular EC infected with R. montanensis, which is genetically similar to R. rickettsii and R. conorii, and displays a similar ability to invade cells, but is non-pathogenic and can be experimentally manipulated under Biosafety Level 2 (BSL2) conditions. We found that infected ECs show a significant decrease in VE-cadherin-EC interactions. In addition, we applied immunofluorescent staining, immunoprecipitation phosphorylation assay, and an in vitro endothelial permeability assay to study the biochemical mechanisms that may participate in the enhanced vascular permeability as an underlying pathologic alteration of SFG rickettsial infection. A major finding is that infection of R. montanensis significantly activated tyrosine phosphorylation of VE-cadherin beginning at 48 hr and reaching a peak at 72 hr p.i. In vitro permeability assay showed an enhanced microvascular permeability at 72 hr p.i. On the other hand, AFM experiments showed a dramatic reduction in VE-cadherin-EC interactive forces at 48 hr p.i. We conclude that upon infection by SFG rickettsiae, phosphorylation of VE-cadherin directly attenuates homophilic protein–protein interactions at the endothelial adherens junctions, and may lead to endothelial paracellular barrier dysfunction causing microvascular hyperpermeability. These new approaches should prove useful in characterizing the antigenically related SFG rickettsiae R. conorii and R. rickettsii in a BSL3 environment. Future studies may lead to the development of new therapeutic strategies to inhibit the VE-cadherin-associated microvascular hyperpermeability in SFG rickettsioses.

Highlights

  • Spotted fever group (SFG) rickettsioses are composed of over 25 species of rickettsiae that are causative agents of a wide spectrum of diseases, ranging from the virulent Rocky Mountain spotted fever (Rickettsia rickettsii) and severe systemic Mediterranean spotted fever (R. conorii) to the recently identified R. parkeri rickettsiosis (R. parkeri) and non-pathogenic R. montanensis [1,2]

  • A major clinical hallmark of spotted fever group (SFG) rickettsial disease is the infection of endothelial cells leading to enhanced vascular permeability

  • Previous studies show that SFG rickettsiae cause dose-dependent hyperpermeability, which was associated with disruption of intercellular adherens junctions (AJs)

Read more

Summary

Introduction

Spotted fever group (SFG) rickettsioses are composed of over 25 species of rickettsiae that are causative agents of a wide spectrum of diseases, ranging from the virulent Rocky Mountain spotted fever (Rickettsia rickettsii) and severe systemic Mediterranean spotted fever (R. conorii) to the recently identified R. parkeri rickettsiosis (R. parkeri) and non-pathogenic R. montanensis [1,2]. The most prominent pathophysiological effects of rickettsial infection are increased microvascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the severity and mortality in Rocky Mountain spotted fever and Mediterranean spotted fever [6]. The cellular and molecular mechanisms by which Rickettsia increase endothelial cell permeability are largely unknown. The underlying molecular mechanism by which the junctional complexes are disrupted, causing changes in the endothelial paracellular milieu during rickettsial infection, remains unclear [6,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.