Abstract

It is well known that the Rickart property of rings is not a left-right symmetric property. We extend the notion of the left Rickart property of rings to a general module theoretic setting and define 𝔏-Rickart modules. We study this notion for a right R-module M R where R is any ring and obtain its basic properties. While it is known that the endomorphism ring of a Rickart module is a right Rickart ring, we show that the endomorphism ring of an 𝔏-Rickart module is not a left Rickart ring in general. If M R is a finitely generated 𝔏-Rickart module, we prove that End R (M) is a left Rickart ring. We prove that an 𝔏-Rickart module with no set of infinitely many nonzero orthogonal idempotents in its endomorphism ring is a Baer module. 𝔏-Rickart modules are shown to satisfy a certain kind of nonsingularity which we term “endo-nonsingularity.” Among other results, we prove that M is endo-nonsingular and End R (M) is a left extending ring iff M is a Baer module and End R (M) is left cononsingular.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.