Abstract

The classical approach restricts the detection of metabolites in serum samples by using nuclear magnetic resonance (NMR) spectroscopy; however, the presence of copious proteins and lipoproteins emphasize and necessitate the development of a contemporary, high-throughput tactic. To eliminate the lipoproteins and proteins from sera to engender filtered sera (FS), the study was executed with 50 μl serum obtained from five healthy individuals with 5 years of age difference from 25 to 45 years old and the application of a unique mechanical filter with molecular weight cut-off value of 2KDa. The 10 μl FS from each individual was pooled to make 50 μl final volume filled in a co-axial tube for acquisition of a battery of 1D/2D investigations at 800 MHz NMR spectrometer and the assigned metabolites was confirmed through mass spectrometry as well as by comparing 1H NMR spectra of individual metabolites. This innovative tactic is commissioning to reveal more than 100 metabolites. In contrast to the protein precipitation method, 24 new metabolites were recognized in the present study. The present innovative approach characterizes nucleosides, nitrogenous bases, and volatile metabolites that possibly produce a landmark for the delineation of a comprehensive metabolic profile applicable for detection of the molecular cause of pathogenicity, early-stage disease detection and prognosis, inborn error of metabolism, and forensic investigations exerting the least volume of FS and NMR spectroscopy. The assignment of 100 metabolites using 1H NMR-based FS is described for the first time in the present report.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call