Abstract
In this paper, the eigenvalue approximation of a compact integral operator with a smooth kernel is discussed. We propose asymptotic error expansions of the iterated discrete Galerkin and iterated discrete collocation methods, and asymptotic error expansion of approximate eigenvalues. We then apply Richardson extrapolation to obtain higher order super-convergence of eigenvalue approximations. Numerical examples are presented to illustrate the theoretical estimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.