Abstract

When the finite-difference method is used to solve initial- or boundary value problems with smooth data functions, the accuracy of the numerical results may be considerably improved by acceleration techniques like Richardson extrapolation. However, the success of such a technique is doubtful in cases were the right-hand side or the coefficients of the equation are not sufficiently smooth, because the validity of an asymptotic error expansion — which is the theoretical prerequisite for the convergence analysis of the Richardson extrapolation — is not a priori obvious. In this work we show that the Richardson extrapolation may be successfully applied to the finite-difference solutions of boundary value problems for ordinary second-order linear differential equations with a nonregular right-hand side. We present some numerical results confirming our conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call