Abstract
The surface hydroxyl groups in TiO2 are crucial to many of its practical applications, but their controlled synthesis represents still a challenge. Herein, nanostructured TiO2 with rich surface hydroxyl species groups and high crystallinity (TiO2-OH) by high-temperature calcination have been developed by using the ionic liquid. Experimental measurements and theoretical calculations show a strong surface hydroxyl signal of two-dimensional 1H TQ-SQ MAS NMR, as well as clear changes of the charge density of TiO2 with the rich surface hydroxyl species. Moreover, the rich surface hydroxyl species groups in TiO2 not only significantly enhance its performances involving photogenerated current, photocatalysis and energy strorage but also show a bright future on marine applications because of its high activity and stability in simulation seawater. The characteristics and mechanism have been proposed to clarify the generation of surface hydroxyl species of TiO2 and the correponding directed hole-trapping at an atomic-/nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.