Abstract

In this paper, we characterize the chaos in the Duffing equation with negative linear stiffness and a fractional damping term given by a Caputo fractional derivative of order α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document} ranging from 0 to 2. We use two different numerical methods to compute the solutions, one of them new. We discriminate between regular and chaotic solutions by means of the attractor in the phase space and the values of the Lyapunov Characteristic Exponents. For this, we have extended a linear approximation method to this equation. The system is very rich with distinct behaviours. In the limits α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document} to 0 or α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document} to 2, the system tends to basically the same undamped system with a behaviour clearly different from the classical Duffing equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call