Abstract
The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2pz–3pz and [2s, 2px, 2py]–[3s, 3px, 3py] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/π bands/σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Royal Society open science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.