Abstract

We present here RICH, a state of the art 2D hydrodynamic code based on Godunov's method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time advancement scheme as well as a novel parallelization scheme based on Voronoi tessellation. Using our code we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time advancement scheme is more accurate and robust than AREPO's, when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Llyod iterations) and it effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way, and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. Moreover, we show that Voronoi based moving mesh schemes suffer from an error, that is resolution independent, due to inconsistencies between the flux calculation and change in the area of a cell. Our code is publicly available as open source and designed in an object oriented, user friendly way that facilitates incorporation of new algorithms and physical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.