Abstract

Rich n-heptane and diesel flames in two-layer porous media are experimentally investigated in the context of syngas production. The stable operating points of n-heptane reforming have been determined and the mole fractions of H 2, CO, CO 2 and light hydrocarbons have been measured in the exhaust gas at an equivalence ratio of 2 for different thermal input values. The reformer performance has been assessed also from the point of view of the heat losses and the mixture homogeneity. The pre-vapouriser produces an approximately uniform vapour–air mixture upstream of the flame front. The range of flow rates for stable flames decreased with increasing equivalence ratio. Heat losses were about 10% of the thermal input at high firing rates. A 77.2% of the equilibrium H 2 was achieved at a flame speed of 0.82 m/s. The same reactor with a different porous matrix for the reforming stage demonstrates diesel reforming to syngas with a conversion efficiency of 77.3% for a flame speed of 0.65 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.