Abstract
To reflect the harvesting effect, a nonsmooth Filippov Leslie–Gower predator–prey model is proposed. Unlike traditional Filippov models, the time delay and reaction–diffusion under the condition of homogeneous Neumann boundary are considered in our system. The stability of equilibrium and the existence of the spatial Hopf bifurcation of the subsystems at the positive equilibrium are investigated. Furthermore, a comprehensive analysis is conducted on the sliding mode dynamics as well as the regular, virtual, and pseudoequilibria. The findings reveal that our Filippov system exhibits either a globally asymptotically stable regular equilibrium, a globally asymptotically stable time periodic solution, or a globally asymptotically stable pseudoequilibrium, contingent upon the specific values of the time delay and threshold level. A boundary point bifurcation, which transform a stable equilibrium point or periodic solution into a stable pseudoequilibrium, is demonstrated to emphasize the impact of time delay on our Filippov system and the significance of threshold control. Meanwhile, two kinds of global sliding bifurcations are exhibited, which sequentially transform a stable periodic solutions below the threshold into a grazing, sliding switching, and crossing bifurcations, depending on changes in the time delay or threshold level. Our results indicate that bucking bifurcation and crossing bifurcation pose significant challenges to the control of our Filippov system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.