Abstract

In this paper, we study the spatiotemporal dynamics of a diffusive Holling–Tanner predator–prey model with discrete time delay. Via analytically and numerically analysis, we unveil six types of patterns with and without time delay. Among them, of particular novel is the observation of linear pattern (consisting of a series of parallel lines), whose formation is closely related with the temporal Hopf bifurcation threshold. Moreover, we also find that larger time delay or diffusion of predator may induce the extinction of both prey and predator. Theoretical analysis and numerical simulations validate the well-known conclusion: diffusion is usually beneficial for stabilizing pattern formation, yet discrete time delay plays a destabilizing role in the generation of pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.