Abstract

Various water-saving irrigation (WSI) practices (e.g., dry cultivation, intermittent irrigation, controlled irrigation, shallow-wet irrigation, and rain-gathering irrigation) have been applied to rice cultivation mitigate water scarcity in China. However, in previous studies, these WSI practices have shown different water savings and yield increases, mainly due to different application conditions. A meta-analysis was applied to investigate the responses of the actual evapotranspiration (ETact), irrigation water (IW), rice yield (Y), and water productivity (WP) to WSI practices in different conditions, and 956 data sets were selected from 108 published papers. The results showed that, compared to traditional flood irrigation, rain-gathering irrigation decreased ETact and IW by 25.41 % and 55.7 % respectively, and increased WP greatly by 14.26 % while having a slight decrease in Y. Except for dry cultivation, all WSI practices increased WP by 4.72–14.26 % compared to traditional flood irrigation. The effects of different soil qualities on rice water consumption and production vary; medium soils with high organic content and a pH below 6.5 are better for rice growth. As for rice seasons, WSI practices had the least impact on ETact in middle rice, with an average reduction of 5.84 %, followed by early rice (–12.66 %) and late rice (–18.81 %). Higher mean annual temperature and more precipitation led to more Y under WSI practices. Differences in the effects of mean annual temperature and mean annual precipitation on WP were not significant. Our meta-analysis provides more insight into the effects of water-saving irrigation practices on rice water consumption, yield, and water productivity at various experimental sites. In general, there is considerable variation in the responses of Y and WP to different water-saving irrigation practices, and more evaluation of aspects such as rice seasons, soil properties, and meteorological conditions is needed for optimizing WSI in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.