Abstract
The Spo0B-associated GTP-binding (Obg) proteins are essential for the viability of nearly all bacteria. However, the detailed roles of Obg proteins in higher plants have not yet been elucidated. In this study, we identified a novel rice (Oryza sativa L.) thermo-sensitive virescent mutant (tsv3) that displayed an albino phenotype at 20° before the three-leaf stage while being a normal green at 32° or even at 20° after the four-leaf stage. The mutant phenotype was consistent with altered chlorophyll content and chloroplast structure in leaves. Map-based cloning and complementation experiments showed that TSV3 encoded a small GTP-binding protein. Subcellular localization studies revealed that TSV3 was localized to the chloroplasts. Expression of TSV3 was high in leaves and weak or undetectable in other tissues, suggesting a tissue-specific expression of TSV3. In the tsv3 mutant, expression levels of genes associated with the biogenesis of the chloroplast ribosome 50S subunit were severely decreased at the three-leaf stage under cold stress (20°), but could be recovered to normal levels at a higher temperature (32°). These observations suggest that the rice nuclear-encoded TSV3 plays important roles in chloroplast development at the early leaf stage under cold stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.