Abstract

Research on plant-virus-vector interactions has revealed that viruses can enhance their spread to new host plants by attracting nonviruliferous vectors to infected plants or driving viruliferous vectors to noninfected plants. However, whether viruses can also modulate the feeding preference of viruliferous vectors for different plant parts remains largely unknown. Here, by using rice stripe virus (RSV) and its vector, the small brown planthopper (SBPH), as a model, the effect of the virus on the feeding preference of its vector was studied by calculating the number of nonviruliferous and viruliferous SBPHs settling on different parts of rice plants. The results showed that the RSV-free SBPHs significantly preferred feeding on the stems of rice plants, whereas RSV-carrying SBPHs fed more on rice leaves. Moreover, the rice plants inoculated with RSV on the leaves showed more severe symptoms, with enhanced disease incidence and virus accumulation compared with rice plants inoculated at the top and bottom of stems, suggesting that the leaves are more susceptible to RSV than the stems of rice plants. These results demonstrate that RSV modulates the feeding preference of its transmitting vector SBPH from the stems to leaves of rice plants to promote virus infection. Interestingly, we also found that the leaves were more susceptible than the stems to rice black-streaked dwarf virus. This study proves that the feeding preference of insect vectors can be modulated by plant viruses to facilitate virus transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call