Abstract

BackgroundMost plant viruses depend on vector insects for transmission. Upon viral infection, virus-derived small interfering RNAs (vsiRNAs) can target both viral and host transcripts. Rice stripe virus (RSV) is a persistent-propagative virus transmitted by the small brown planthopper (Laodelphax striatellus, Fallen) and can cause a severe disease on rice.ResultsTo investigate how vsiRNAs regulate gene expressions in the host plant and the insect vector, we analyzed the expression profiles of small RNAs (sRNAs) and mRNAs in RSV-infected rice and RSV-infected planthopper. We obtained 88,247 vsiRNAs in rice that were predominantly derived from the terminal regions of the RSV RNA segments, and 351,655 vsiRNAs in planthopper that displayed relatively even distributions on RSV RNA segments. 38,112 and 80,698 unique vsiRNAs were found only in rice and planthopper, respectively, while 14,006 unique vsiRNAs were found in both of them. Compared to mock-inoculated rice, 273 genes were significantly down-regulated genes (DRGs) in RSV-infected rice, among which 192 (70.3%) were potential targets of vsiRNAs based on sequence complementarity. Gene ontology (GO) analysis revealed that these 192 DRGs were enriched in genes involved in kinase activity, carbohydrate binding and protein binding. Similarly, 265 DRGs were identified in RSV-infected planthoppers, among which 126 (47.5%) were potential targets of vsiRNAs. These planthopper target genes were enriched in genes that are involved in structural constituent of cuticle, serine-type endopeptidase activity, and oxidoreductase activity.ConclusionsTaken together, our results reveal that infection by the same virus can generate distinct vsiRNAs in different hosts to potentially regulate different biological processes, thus reflecting distinct virus-host interactions.

Highlights

  • Most plant viruses depend on vector insects for transmission

  • To gain further insights into the regulatory functions of virus-derived small interfering RNAs (vsiRNAs) in host plants and an efficient insect vector, we studied the profiles of small RNAs and mRNAs in Rice stripe virus (RSV)-infected rice and small brown planthopper

  • We show that RSV generates vsiRNAs that accumulate in both hosts, and generates host-specific vsiRNAs that potentially control different defensive responses in the two hosts

Read more

Summary

Introduction

Virus-derived small interfering RNAs (vsiRNAs) can target both viral and host transcripts. Yang et al BMC Plant Biology (2018) 18:219 immunity strategies is the RNA silencing machinery triggered by virus infection. This machinery targets both viral transcripts and host transcripts [9,10,11,12]. Viral dsRNAs accumulate during virus infection and are processed into vsiRNA duplexes by Dicer-2. These vsiRNAs are loaded onto insect AGO2 to target viral transcripts [25,26,27]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.