Abstract

Soil surface with crop residue is effective in reducing soil erosion and carbon (C), nitrogen (N), and phosphorus (P) losses from sloping fields. However, there is a high possibility that surface cover increases export of dissolved organic C (DOC) though relevant field studies under natural rainfall are lacking. In this study, the effects of surface cover with rice (Oryza sativa L.) straw on soil and CNP losses in both dissolved and sediment-bound forms from maize (Zea mays L.) fields were investigated under two fertilization levels (standard and double) × two types of runoff experiments (natural rainfall and artificial irrigation). Changes in soil properties including moisture, temperature, nutrients, and C concentration as well as maize yield were also examined. Surface cover decreased soil and total CNP losses by up to 82% across the experimental plots with some exceptions. However, surface cover increased DOC export in both natural (by 68–82% in total across all events) and artificial (by 3–4 fold) runoff, suggesting that crop residue cover may act as a DOC pollution source of water bodies. The contribution of rice straw to DOC, which was calculated using the δ13C of DOC from covered plots (−24.1 to −28.0‰) and control plots (−19.6 to −25.1‰), was 52.5–95.8%. The concentrations of K2SO4-extractable and microbial biomass C of the soils did not differ between covered and control plots, suggesting that DOC produced from rice straw was not incorporated into the soils, but rather, was washed out with surface runoff in this study. Surface cover increased maize growth and yield, particularly in double fertilization plots, through improved soil moisture, temperature, and nutrient conditions. To take full advantage of surface cover with crop residue, a further study on reducing DOC loss from crop residue needs to be conducted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.