Abstract
Mucosal delivery of peptide/protein therapeutics via the oral route is a desirable strategy in human immunotherapy. A key step for enhancing the bioavailability of orally administered therapeutics is to protect them from enzymatic digestion in the gastrointestinal tract. Here, we generated transgenic rice seeds accumulating allergen-derived T cell epitopes, a model tolerogen for the control of pollen allergy, in either ER-derived protein body-I (PB-I) or protein storage vacuole protein body-II (PB-II). Compared with PB-II-localized or chemically synthesized forms, PB-I-localized T cell epitopes showed higher resistance to enzymatic digestion in simulated gastric fluid. Moreover, the dose of T cell epitope required for suppression of allergen-specific IgE in mice was about 20-fold lower when fed in PB-I localized form than when unprotected. These findings demonstrate the potential of bioencapsulation in PB-I for broad applications as a viable strategy to achieve efficient mucosal delivery of oral peptide/protein therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.