Abstract

Rice is the major staple food of Asia, and an important source of employment and income in rural areas, particularly in low-income countries. Research has contributed significantly in achieving food security by increasing the yield potential of rice in irrigated systems, reducing the crop maturity period and achieving yield stability by developing resistance against major insects and diseases in the modern high-yielding varieties. Poverty is, however, still extensive in fragile rainfed rice ecosystems where rice yield has remained low, as scientists have yet to develop high-yielding varieties resistant to abiotic stresses and problem soils. Rice production needs to be increased by another 70% over the next 30 years to meet growing food needs. This has to be achieved with less land, less water, and less labor to accommodate the demand for these inputs from the expanding nonagricultural sectors. The challenge to the rice research community is to make further shifts in yield potential of rice for the irrigated systems, to close the yield gaps in the rainfed systems through developing resistance of high yielding varieties to abiotic stresses, and greater understanding of the interactions between genotypes and environment, developing durable resistance against pests and diseases to reduce farmers' dependence on harmful agrochemicals, and to increase efficiency in the use of water, labor and fertilizers. As further intensification of rice cultivation is inevitable, scientists must understand the negative environmental side-effects of increasing rice productivity, to develop appropriate mitigation options.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call