Abstract

Applying slow-release fertilizers is possible means for reducing nitrogen (N) loss in rice production. Matrix-based fertilizers represent novel slow-release fertilizers. To date, there is little consensus about the effect of combined addition of organic and inorganic matrix materials on rice production. We developed a slow-release urea fertilizer with selected organic and inorganic matrix materials. The study aimed to: i) determine the effect of the slow-release urea on rice yield, profit, and agronomic efficiency and ii) elucidate its possible mechanisms. A two-year field experiment was conducted during 2015–2016. Besides, laboratory experiments were conducted to determine the potential N loss risk. Three treatments were set up: control without N application (CK), regular urea treatment (RU, 150 kg N ha–1), and slow-release urea treatment (SU, 150 kg N ha–1). The results showed that rice biomass and grain yield were significantly higher in SU than in RU (P < 0.05). The higher panicle density in SU was largely responsible for the greater grain yield. Net profit in SU was ≥ US$450 ha–1, higher than in RU. Agronomic efficiency was significantly greater in SU than in RU (P < 0.05). Rice height, root area, leaf chlorophyll, leaf nitrate reductase activity, and leaf glutamine synthetase activity were larger in SU than in RU. Less N loss and greater soil N availability were partly responsible for the improvements in rice growth traits and physiological parameters in SU. Overall, the slow-release urea is a promising fertilizer for rice production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.