Abstract

microRNAs act as fine-tuners in the regulation of plant growth and resistance against biotic and abiotic stress. Here we demonstrate that rice miR1432 fine-tunes yield and blast disease resistance via different modules. Overexpression of miR1432 leads to compromised resistance and decreased yield, whereas blocking miR1432 using a target mimic of miR1432 results in enhanced resistance and yield. miR1432 suppresses the expression of LOC_Os03g59790, which encodes an EF-hand family protein 1 (OsEFH1). Overexpression of OsEFH1 leads to enhanced rice resistance but decreased grain yield. Further study revealed that miR1432 and OsEFH1 are differentially responsive to chitin, a fungus-derived pathogen/microbe-associated molecular pattern (PAMP/MAMP). Consistently, blocking miR1432 or overexpression of OsEFH1 improves chitin-triggered immunity responses. In contrast, overexpression of ACOT, another target gene regulating rice yield traits, has no significant effects on rice blast disease resistance. Altogether, these results indicate that miR1432 balances yield and resistance via different target genes, and blocking miR1432 can simultaneously improve yield and resistance.

Highlights

  • In plant-pathogen co-evolution, plants employ two-layered immunity to counterattack the invasion of pathogens, namely PAMP/MAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) (Jones and Dangl 2006)

  • Overexpression of miR1432 Compromises Rice Blast Disease Resistance In rice, one MIR1432 gene was identified locating on chromosome 7

  • These results indicated that miR1432 is responsive to M. oryzae

Read more

Summary

Introduction

In plant-pathogen co-evolution, plants employ two-layered immunity to counterattack the invasion of pathogens, namely PAMP/MAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) (Jones and Dangl 2006). PTI is the first layer of plant immunity activated by the recognition of the PAMPs/MAMPs and pattern recognition receptors (PRRs), such as bacterium-derived flg and fungus-derived chitin, to effectively protect plants from the invasion of potential pathogens (Boller microRNAs (miRNAs) are a category of 20–24-nucleotide (nt) non-coding RNAs expressed from MIR genes and regulate target gene expression by sequence-complementary DNA methylation or mRNA cleavage, or translational inhibition (Yu et al 2017). Based on their roles in the regulation of gene expression, miRNAs act. At a later infection stage, miR863-3p limits immunity amplitude by silencing SERRATE, which is required for miRNA accumulation and positively regulates plant defense (Niu et al 2016)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.