Abstract
Rice production contributes a considerable amount to national income. Rice production can be affected by various diseases like brown spots, bacterial leaf blight, leaf smut caused by fungi, bacteria, etc. In this research, the diagnosis of rice plant leaf disease is done using random-forest classification and Digital image processing. The random forest classifier is efficient and accurate on a large dataset. The image is uploaded to the system by following digital image processing steps and using a random forest algorithm to perform on the processed image which outputs disease name, cause, symptoms, and remedy respectively. The proposed method also predicts the crop yield based on temperature, rainfall, humidity, and soil pH level. Overall, the model achieves 90% of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering Research in Computer Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.