Abstract

Cement is the most utilized construction material. The energy-intensive processes that are involved in its production contribute up to 10% of total global CO2 emissions, with potentially adverse environmental implications. It is however possible, that energy and cost efficiency can be achieved by reducing on the amount of clinker, and in its place utilising supplementary cementitious materials (SCMs) or pozzolans that require less process heating and emit fewer levels of CO2. Currently, most sustainable concrete uses either GGBS (slag) or PFA (fly ash) to reduce the quantity of cement used in construction and highways applications. GGBS and PFA come from industries (steel and coal waste respectively) which are in decline that should not be relied upon in the long term. This report shows that cement in concrete can also be replaced with rice husk ash (RHA) which actually enhances the mechanical properties. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in civil engineering applications that is sourced from an environmentally friendly and sustainable industry. This study investigated the potential of RHA to be used as a SCM by evaluating mechanical properties. Experiments were carried out by supplementing cement in concrete mixes with RHA at up to 10% replacement by mass. Results were compared with a control specimen (100% cement), with a water/binder (w/b) ratio of 0.4 and C32/40 design mix using CEM I. The results show excellent early age strengths with all RHA mixes surpassing 40 MPa strength within 7 days which is contrary to general trends in SCM concrete where strength development is slow in the initial stages in comparsion to 100% cement concrete. All RHA specimens exhibited impressive flexural and tensile strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.