Abstract

BackgroundThe rice transcription factors IDEF1, IDEF2, and OsIRO2 have been identified as key regulators of the genes that control iron (Fe) uptake, including the biosynthesis of mugineic acid-family phytosiderophores (MAs). To clarify the onset of Fe deficiency, changes in gene expression were examined by microarray analysis using rice roots at 3, 6, 9, 12, 24, and 36 h after the onset of Fe-deficiency treatment.ResultsMore than 1000 genes were found to be upregulated over a time course of 36 h. Expression of MAs-biosynthetic genes, OsIRO2, and the Fe3+–MAs complex transporter OsYSL15 was upregulated at the 24 h and 36 h time points. Moreover, these genes showed very similar patterns of expression changes, but their expression patterns were completely different from those of a metallothionein gene (OsIDS1) and the Fe2+-transporter genes OsIRT1 and OsIRT2. OsIDS1 expression was upregulated by the 6 h time point. The early induction of OsIDS1 expression was distinct from the other Fe-deficiency-inducible genes investigated and suggested a functional relationship with heavy-metal homeostasis during the early stages of Fe deficiency.ConclusionsWe showed that many genes related to MAs biosynthesis and transports were regulated by a distinct mechanism in roots. Furthermore, differences in expression changes and timing in response to Fe deficiency implied that different combinations of gene regulation mechanisms control the initial responses to Fe deficiency.Electronic supplementary materialThe online version of this article (doi:10.1186/1939-8433-6-16) contains supplementary material, which is available to authorized users.

Highlights

  • The rice transcription factors IDEF1, IDEF2, and OsIRO2 have been identified as key regulators of the genes that control iron (Fe) uptake, including the biosynthesis of mugineic acid-family phytosiderophores (MAs)

  • We report the synchronous expression of the MA biosynthetic genes, TOM1, OsYSL15, and OsIRO2, and the unique expression patterns of OsIDS1 and OsIRT1

  • The expression of two transcription factors, IDEF1 and IDEF2, was stable at all time points, consistent with previous results from plants subjected to long-term Fe deficiency (Additional file 2; Kobayashi et al 2007; Ogo et al 2008)

Read more

Summary

Introduction

The rice transcription factors IDEF1, IDEF2, and OsIRO2 have been identified as key regulators of the genes that control iron (Fe) uptake, including the biosynthesis of mugineic acid-family phytosiderophores (MAs). To clarify the onset of Fe deficiency, changes in gene expression were examined by microarray analysis using rice roots at 3, 6, 9, 12, 24, and 36 h after the onset of Fe-deficiency treatment. The low solubility and availability of Fe in the soil solution often induces Fe deficiency in plants, especially in high-pH soils. Higher plants have evolved two strategies to take up Fe from soils (Römheld and Marschner 1986). With the exception of graminaceous plants, higher plants reduce Fe3+ ions in soils using the ferric reductase FRO, and take up Fe2+ ions via the Fe2+

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call