Abstract

In the field of precision agriculture, diagnosing rice diseases from images remains challenging due to high error rates, multiple influencing factors, and unstable conditions. While machine learning and convolutional neural networks have shown promising results in identifying rice diseases, they were limited in their ability to explain the relationships among disease features. In this study, we proposed an improved rice disease classification method that combines a convolutional neural network (CNN) with a bidirectional gated recurrent unit (BiGRU). Specifically, we introduced a residual mechanism into the Inception module, expanded the module's depth, and integrated an improved Convolutional Block Attention Module (CBAM). We trained and tested the improved CNN and BiGRU, concatenated the outputs of the CNN and BiGRU modules, and passed them to the classification layer for recognition. Our experiments demonstrate that this approach achieves an accuracy of 98.21% in identifying four types of rice diseases, providing a reliable method for rice disease recognition research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.