Abstract

Grain yield and quality of rice mainly depend on grain filling and endosperm development. Here we report that a rice NUCLEAR FACTOR Y (NF-Y) transcription factor, OsNF-YB1, is specifically expressed in the aleurone layer of developing endosperm and regulates grain filling and endosperm development. Knockdown of OsNF-YB1 expression by RNAi significantly retarded grain filling, leading to small grains with chalky endosperm as well as altered starch quality. Whereas OsNF-YB1 shows subcellular localization in both the cytosol and the nucleus in roots, it was specifically targeted to the nucleus of aleurone layer cells, which was facilitated by interacting with OsNF-YC proteins preferentially expressed in the aleurone layer. RNA sequencing analysis revealed that genes related to membrane transport and ATP biosynthesis were enriched in the down-regulated category in OsNF-YB1 RNAi plants, which is consistent with the crucial role of OsNF-YB1 in rice grain filling and endosperm development. Identification of the genome-wide targets of OsNF-YB1 by ChIP sequencing showed that OsNF-YB1 directly regulates genes involved in the transport of nutrients such as sugar and amino acids. Interestingly, different from the binding sites reported for other NF-Y complexes, the GCC box, the binding motif of ERF transcription factors, was enriched in the binding peaks of OsNF-YB1. Indeed, further analyses confirmed the interaction of OsERF#115 with OsNF-YB1, and OsERF#115 directly binds to the GCC box. It is proposed that OsNF-YB1 specifically regulate the transcription of downstream genes during rice endosperm development by forming protein complexes consisting of OsNF-YB1, OsNF-YC and ERF, providing informative insights into the molecular functional mechanisms of the NF-Y factor.

Highlights

  • Seeds after fertilization qRT-PCR analysis reveals the seed-preferential expression of OsNF-YB1

  • Relative expression was calculated and data are shown as mean ± SE (n = 3)

  • Phenotypic observation showed that OsNF-YB1 RNAi transgenic plants do not present obvious growth changes at heading stage

Read more

Summary

Introduction

Seeds after fertilization qRT-PCR analysis reveals the seed-preferential expression of OsNF-YB1. Promoter-GUS fusion analysis reveals the specific expression of OsNF-YB1 in aleurone layer of seeds. Ten independent transgenic lines were analyzed and longitudinal section (left) and transverse section (right) of seed at Southern blot analysis of OsNF-YB1 RNAi transgenic lines.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.